
FINAL REPORT

THE CADSS DESIGN AUTOMATION SYSTEM

by

ERNEST A. FRANKE

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

The research for this report was supported by the

National Aeronautics and Space Administration,

Johnson Space Center, Houston, Texas.

CONTRACT NUMBER NAS 9-9214

DEPARTMENT OF ELECTRICAL ENGINEERIN '11/94

TEXAS A&I UNIVERSITY 'CP C c

KINGSVILLE, TEXAS

(NASA-CR-1341 6 5) THE CADSS DESIGN N74-1388

AUTOMATION SYSTEM Final Report (Texas

A&I Univ , Kingsville) -7-9- p HC $6 00
I9 CSCL 09B Unclas

G3/08 25678

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

ABSTRACT

The purpose of this research was to implement and extend
a previously defined design automation system for the design
of small digital structures.

The report includes a description of the higher level
language developed to describe systems as a sequence of register
transfer operations. The system simulator which is used to
determine if the original description is correct is also discussed.

The design automation system produces tables describing the
state transitions of the system and the operation of all registers.
In addition all Boolean equations specifying system operation are
minimized and converted to NAND gate structures.

Suggestions for further extensions to the system are also
given.

Preceding page blank

ii

TABLE OF CONTENTS

PAGE

Abstract ii

List of Figures iv

List of Tables v

Chapter I
Introduction 1

Chapter II
The Flow Chart Description Language 4

Chapter III
A Serial Binary Multiplier Example 19

Chapter IV
The CADSS Simulator 33

Chapter V
Development of Complete Design 43

Chapter VI
Conclusions and Recommendations 62

Appendix A.
Thesis Abstracts 66

List of References 74

iii

LIST OF FIGURES

FIGURE PAGE

3.1 Flow Chart of 10 bit Multiplier 24

3.2 State Diagram for Multiplier Example 31

4.1 Sequenced Operation of CADSS Simulator 37

4.2 Simulation with Unit Value Trace 40

4.3 Simulation without Trace 41

5.1 State Assignment Example Description 45

5.2 Computer Generated State Assignment 46

5.3 Programmable Read Only Memory 48

5.4 Minterm List (Program Format) 51

5.5 Minterm List (Printed Format) 52

5.6 Description for NAND Example 54

5.7 Minterms NAND Structure and Logic Diagram 55

iv

LIST OF TABLES

TABLE PAGE

3.1 Serial Multiplication 21

3.2 CADSS Program for Multiplier 26

3.3 CADSS Element List 27

3.4 Computer Output State Table 28

3.5 State Transition Table 30

3.6 CADSS Unit Operation Table 32

v

CHAPTER I

INTRODUCTION

In recent years digital computers have been applied, with
great success, to the automation of an increasing variety of
tasks in the design of digital systems, from the printing of
wiring tables and the drawing of logical diagrams to the

optimization, according to certain criteria, of the layout
of components and wiring.and even the actual computer con-
trolled production of subassemblies such as printed circuit
boards or integrated circuits.

More recently, languages have been developed which permit
the simulation of a proposed system on an existing digital
computer.

Examples of a few languages are given below to show recent
work which has been done in this field.

The Logic Design Translator (LDT) System was developed
as an aid in the automation of logic design of digital com-
puter systems (Ref. 1). LOTIS is a formal language for
describing the logical structure, the sequencing and the
timing of digital machines (Ref. 3).

A register transfer language has also been developed for
the Computer-Aided Digital System design and analysis (Ref. 4).

A computer program known as BLODI accepts for an input
a source program written in the BLODI language, which cor-
responds closely to an engineer's block diagram of a circuit,
and produces a machine program to simulate the circuit
(Ref. 2).

Though the utilization of computers in designing digital
systems is a recent innovation, a large amount of work has
been done in this field. Computers are now being used to
perform routine jobs: positioning the computer elements,
providing the back panel wiring, printing part lists, checking
and recording logical diagrams, doing a large part of the
drafting, etc. (Ref. 5).

The reasons for design automation are a possible reduc-
tion in costs, increased problem analysis capabilities, an
increase in man's creative ability through man-machine inter-
action, increased speed of design, change control and docu-
mentation, and in increase in the efficiency of available
manpower.

2

Computer aid in the logical design of a digital system
represents a natural extension of these automation proce-
dures. This report is based on an attempt to develop a set
of computer programs to produce a logic design from a con-
ceptual (flow chart) design. The system developed has been
named CADSS, an acronym for "Computer Aided Digital System
Synthesis". CADSS has been developed to a point where a
complete description of the operation of the system can be
specified. The CADSS language has also been used as
the input to a simulator, but the language has not yet been
developed to specify different digital elements (like Flip-
Flops, Gates, etc.) to be used for the whole digital system
and to make a complete logic drawing of the system. As a
whole CADSS represents a simple language which can be learn-
ed without having much background in computer programing.

The primary subject of this report consists of the des-
cription and use of the language to design a digital system
and to develop a computer program to produce a table which
will specify each operation and condition of each part of
the digital system to be designed. The program was written
in such a way that this table can further be used to assign
various digital components to each block and finally be used
in producing a complete logic design of the system.

1.1 An Introduction to the Design of Digital Systems

The development of the computer aided digital system
synthesis (CADSS) program is an attempt to apply Computer-
Aided design techniques to the design of Sequential Logic
Systems. The recent development of integrated circuits
and the anticipated development of large scale integration
of logic elements allows a designer to use standard func-
tional units such as registers, counters, or adders in the
design of a System. A complete digital system may then be
described in terms of the operations of the functional units
and the control logic necessary to sequence the operations.

A digital system described in CADSS produces a computer
output (giving each unit -- operation and condition.) This
output can easily be combined to produce a complete logic
design of the system.

Basically any set of sum-of-products Boolean equations
can be said to represent a constructional description of
a digital system. The digital system design problem can
then be reduced to the problem of obtaining such a con-
structional description. Of course, before starting from
Boolean equations, conceptual design and functional design
are done, but the main concentration in the CADSS Programs

3

is placed on logic design and its implementation in com-
puter programs.

Starting from the Boolean equations it should be pos-
sible to automate a complete set of operations for each unit
which would be implemented into complete logic diagrams of
the system specifying each standard functional unit to be
used.

Completion of this phase of the design process will
result in a hardware layout description and a wiring list.

CHAPTER II

2. THE FLOW CHART DESCRIPTION LANGUAGE

The Computer Aided Digital System Synthesis (CADSS) language
was developed without paying much attention to linguistic
aspects. The most important factors taken into consideration
are given below:

1. The operations of a digital system must be described
by the CADSS language at the flow chart level.

2. The language must easily be learned by digital system
engineers knowing the concepts and terminology of
digital systems only, even without having much ex-
perience in computer programing.

3. The CADSS language must also serve as an input to a
simulator. This requires the inclusion of simula-
tion control commands such as print, read and pause.

4. The language must be capable of describing two or
more concurrent interacting systems in order to
avoid the problems arising from the interaction of
separate machines.

4

5

DESCRIPTION OF THE CADSS LANGUAGE

2.1 GENERAL CONVENTIONS:

INPUT MEDIA: In order to facilitate preparation and
modification of system descriptions, the

input medium for CADSS is punched cards. No column
restriction has been used and all 80 columns of a
card may contain information.

COMMENT CARDS: A 'C" in the first column of a card
designates a comment card. Comment

cards are ignored by the processor and are simply
printed out with the program listing.

TERMINATION CHARACTER ($): A special termination character
($) is used to indicate the end

of a syntatic unit of the program such as a declaration
or statement. Since a special termination character is
used to indicate the end of a statement, a statement may
thus be continued from one card to the next but the con-
tinuation must occur at a blank i.e. names, words, and
numbers may not be divided. After a termination charac-
ter, the remainder of the card is not processed, and ad-
ditional comments may be placed after the terminator.
The next statement must begin on a new card.

FORMAT: Cards are punched in free-format form. The
only requirement is that at least one blank

is necessary as a separator between syntactic elements
such as words or numbers, but no restriction is placed
on the number of blanks.

2.2 UNIT AND DECLARATIONS:

Hardware units such as memory elements or functionally
connected groups of memory elements (counters or regis-
ters) correspond to CADSS 'Units.' All units are de-
clared in the first section of the CADSS program. The
unit declared format is:

UNIT TYPE: NAME 1, NAME 2, ----------$

The unit types are:

1. INPUT: Input units are supplied to the system from
outside. An input value cannot be changed
by the CADSS program.

6

2. OUTPUT: The memory elements supplying information
from the system are treated as output units.

3. REGIST: Groups of memory elements on which operations
(shifting right or left, setting to any de-
sired value, incrementing or decrementing
in binary sequence) can be performed are
declared as registers.

NAME: A name must start with an alphabetic character
foWlowed by a sequence of alphabetic and/or numeric
characters. The first six characters of any two names
may not be the same, but otherwise there is no restric-
tion on the length of a name. If the unit declared
consists of more than one memory element (or if it con-
sists of several input/output lines considered as one
unit), the name is subscripted with the number of memory
elements in the unit. In the case of counters and regis-
ters the most significant bit is Bit 1, and it is loca-
ted in the leftmost memory element of the unit. The
names in a declaration list are separated by commas and
the list is terminated by a dollar sign ($).

EXAMPLES

INPUT: START, CLEARA, DATA (8) $

OUTPUT: READY, DATAOUT (10) $

REGIST: BUFFER (10), STATE (3), A (20), AREG (10) $

All declarations must appear in the heading of the CADSS
description. The defined units of the System may be used
as operands in three ways:

1. If the entire unit is to be used as the operand the
unsubscripted name is used

AREG

2. An operand consisting of a single bit of a unit is
indicated by the name with a single subscript such
as

AREG (1)

3. If a section (several adjacent bits) of a unit is to
be used as a subscript this is indicated by an ex-
tended subscript. For example, the first four bits
of BUFFER would be referred as

7

AREG (1-4)

2.3 STATEMENTS:

A statement is a basic element of a CADSS program.
The structure of a statement consists of a CONDITION
LIST and an OPERATION LIST. These two lists will be
described separately. Then their use in the formation
of a statement will be considered.

2.3.1 CONDITION LIST:

The condition list is a well formed Boolean Expression
of defined units of the System, Boolean literals, and
the following operators:

1. - Logical NOT
2. + Inclusive OR
3. * Logical AND
4. = Logical Equality
5. 1 Transition to True
6. 1-Transition to false

LOGICAL OPERATORS: The logical negation (NOT) operator
is used with a single one bit operand. The logical
value of the negated variable is true when the variable
is false and false when the variable is true. The logical
AND and OR operators (+,*) are used in the conventional
manner. Each operator requires two operands of one bit
each. The logic Equality (=) operator also requires two
operands, but at least one must be a defined unit. The
other operand may be a binary value. Basically, the
logic Equality operator is used to obtain a result by
comparing bits of two operands. To illustrate the full
use of logic Equality operators some examples are given
below:

Examples: If we define OUTPUT: FINISH $

INPUT: AIN, BIN, SA, SB $

REGIST: R(20), AREG (10),
BREG (10), ISIGN,
PCTR (4) $

8

PCTR=0000 is true when all the four bits of PCTR are
zero, and the statement is false for all other PCTR
values.

Similarly:

ISIGN = (SA*SB)+(-SA*-SB)

This states that the operation is true when the Boolean
expression, (SA*SB)+(-SA*-SB), is true and false when
the Boolean expression is false.

TRANSITIONAL OPERATORS:

The transitional operators ('and'-) are special unary
operators which are true when the single one bit oper-
and changes value. The use of the transition opera-
tors is illustrated in the following examples:

'CLEAR True when CLEAR changes from false to true.

'-BUFFER(3)True when the third bit of BUFFER changes
from true to false.

The normal order in which operations are performed in
a condition list is

1. = Equality operation
2. : Transition to true operation
3. :-Transition to false operation
4. - Negation operation
5. * And operation
6. + OR operation

By using parenthesis, the normal ordering of the opera-
tions may be modified.

All the condition lists must be well formed Boolean
expressions i.e. each operator must be associated
with the correct number of operands in the right order.
The following examples illustrate the condition lists:

INPUT: AIN (10), BIN (10), START, SA, SB, $

REGIST: R(20), B(10), SCTR (4), PCTR (4), CARRY,
SUM, NCARRY, ISIGN $

9

Examples of condition lists:

R(1)*B(1)+R(1)*CARRY+B(1)*CARRY

(SA*SB)+(-SA*-SB)

(R(1)+B(1))*-CARRY+(R(1)+CARRY))*-B(1)

(B(1)+CARRY)*-R(1)

2.3.2 OPERATION LISTS

The system operations during some increment of time are
specified by a list of commands called the operation
list. There are three types of commands available in
the CADSS input language.

(a) Unit control command
(b) Sequence control command
(c) Simulation control command

(a) Unit control command:

Unit control commands can be grouped into 8 dif-
ferent commands as described below:

1. SET/UNIT NAME/

This specifies that the unit named is to be set
to true (all ones)

Such as: Set AREG $

2. RESET/UNIT NAME/

This specifies that the unit named is to be reset
to a logical false value (All zeros).

Ex. RESET PCTR $

3. RSHIFT/REGISTER NAME/ENTER/BIT NAME/

This specifies that the register named is to be
shifted right one place. The value of the bit named is
shifted into the left most position of the register.

Ex. RSHIFT R ENTER SUM $ (Shift register R to
right one place and put the contents of SUM
in R(1))

10

4. LSHIFT/REGISTER NAME/ENTER/BIT NAME/

This specifies that the register named is to be

shifted left one position. The value of the bit named

is placed in the right most position of the register.

5. INCREMENT/REGISTER NAME/

This specifies that the register named is to be in-

cremented in binary sequence.

6. DECREMENT/REGISTER NAME/

This specifies that the named register is to be decre-
mented in binary sequence.

7. LOAD/NAME 1/FROM/NAME 2/

This specifies that contents of NAME 2 are to be trans-
ferred to NAME 1 leaving the contents of NAME 2 un-
changed. The dimensions of the named units must be
the same.

8. LOAD/NAME 1/ FROM/ BINARY LITERAL/

This specifies that NAME 1 is to be assigned the value
of the binary literal.

It has already been said that input values remain un-
changed, and a command trying to make any change in
the input value is illegal. As described in Section
(2.3) a name used may be an unsubscripted name designat-
ing a complete unit, a name with a single subscript
indicating a single bit of that named unit, or a name
with an extended subscript denoting a section of a
named unit.

(b) Sequence control command:

The second type of Command controls the sequence of the
program. It has only one command, described below:

GO TO/ LABEL/

This command intercepts the normal sequence of opera-
tions and transfers control to the point indicated by
the LABEL (See Section 2.4).

(c) Simulation control command:

These commands control the simulation of the system.
Since the system is to be simulated, it is necessary
for the user to specify when inputs are to be changed
and when the contents of specified units are to be
printed out.

The Simulation Control Commands described are:

1. ACCEPT

This command transfers the information of a data

card to the Input units. The binary number in the
first column of the card is transferred to the first
bit of the input. The number in the second column
of the card is transferred to the second bit of the

input unit declared, and so on.

2. DISPLAY:

This controls the printing of the contents of the

units named in the print list. The print list is a
list of unit names entered during simulator initiali-
zation. This may be changed without recompiling the
program.

3. PAUSE:

This command halts the normal termination of the
simulator until the computer 'run' switch is pressed.
This may be used to provide time for the operator to
observe the current condition of the system so that
data cards may be prepared accordingly. This is par-
ticularly useful when the simulated system is to inter-
act with an operator, process, or machine. An Opera-
tion list is a sequence of commands separated by commas.
Given below is the order in which commands are to be
executed, in case more than one command appears in a
list.

1. All unit control commands (Simultaneously)
2. Accept command
3. Display command
4. Pause command
5. Sequence control (GO TO) command

12

Some examples are given in order to explain operation
lists.
Assuming the units defined are:

OUTPUT: FINISH, ISIGN, A, B, C $
INPUT: START $
REGIST: R(20), B(10), SCTR(4), PCTR, AREG(10),BREG(4) $

Example:

LOAD SCTR FROM 0101,GO TO SKIP $

In this example SCTR is set to 0101, and control is
then transferred to label Skip.

RESET AREG, GO TO HERE. $

AREG is reset, and control is transferred to label named HERE.

SET R, LOAD AREG (1-4) FROM BREG,LOAD BREG FROM AREG
(4-8), DISPLAY

R is Set, the first four bits of AREG are set to the
contents of BREG, the contents of 4-8 bits of AREG
are transferred to BREG, and the contents of the units
specified by the print list are printed.

2.3.3 STATEMENT FORMATION:

The operation and condition lists described in the
previous section now may be combined to form a state-
ment. There are three different type of formats for
statements:

(a) THEN/OPERATION LIST /$

This specifies that operation has to be done regard-
less of conditions existing in the system.

(b) If an operation is to be performed for a given
condition, a conditional statement format can be used.

WHEN/CONDITION LIST/THEN/OPERATION LIST/$

Now the operation list is executed only when the condi-
tion list is true.

(c) Sometimes a system has to perform one set of opera-
tions when the condition is true and otherwise perform
another set of operations when the condition is False.
This is specified by the else statement format.

WHEN/CONDITION LIST/THEN/OPERATION LIST/ELSE/OPERATION LIST/$

13

In this case if the condition list is true, the first
set of operations is executed. If the condition is
false the commands in the second operation list are
executed.

STATEMENT EXAMPLES ARE:

a.THEN LOAD BREG FROM AREG (1-4) $
THEN SET FINISH $

b.WHEN 'START THEN RESET AREG $
WHEN PCTR = 0000 THEN SET FINISH $

c.WHEN -R(11) THEN GO TO SKIP ELSE LOAD SCTR FROM 0101$
WHEN SCTR = 0000 THEN GO TO SHIFT ELSE LSHIFT R ENTER
SUM $

2.4 LABELS:

A label is a sequence of alphabetic and/or numeric
characters starting with an alphabetic. No restric-
tion has been placed on the length of the labels but
the first six characters must not be same. A label
may be used with any statement separated by a colon.

LABEL:STATEMENT

Any statement which is to be referenced by a sequence
control command (GO TO) must be labeled. Labels may
also be used with any statement to enhance the mean-
ing of a program. Any statement which is to be the
initial statement in the description of a system must
be labeled so that it may be referred to during simu-
lator initialization.

2.5 PROGRAM BLOCK STRUCTURE:

The statements of a CADSS program correspond roughly
to the blocks making up the flow chart describing the
system operation. In the case of a flow chart des-
cription of a system, the sequence of operation fol-
lows flow paths from block to block so that at a given
time only the operations of one block may occur. This
block may be said to be active at that particular time
while all others are inactive.

14

In the same way, the sequence of operations in
a CADSS program follows paths defined by the struc-
ture of the program. At a given time one (or per-
haps several) of the statements are permitted to per-
form operations. The statements that may perform
operations at a particular time are said to be poten-
tially active at that time. The order in which state-
ments become potentially active is defined by the block
structure of the program and the sequence control
commands.

For purposes of description it is useful to con-
sider the statement or statements which are poten-
tially active as being in control of the system.
"Control" may be considered as a pointer (or pointers)
which moves through the program, always specifying the
potentially active statement (or statements). The trans-
fer of control command (GO TO) may be interpreted as
specifying the label of the next potentially active
statement.

A block of a CADSS program consists of one state-
ment which may be labeled followed by any number of
unlabeled statements. Since three different types
of blocks are defined, it is necessary to indicate
a change in block type by means of a block type speci-
fication. The format of a block is:

BLOCK TYPE: LABEL: STATEMENT $

STATEMENT $

STATEMENT $

The block type specification may be emitted if the type
is the same as that of the preceeding block. If the
type specification is present the statement label may
be omitted.
The end of a block (and the beginning of the following
block) is indicated by a block type specification,
a statement label, or both. One obvious result of this

15

method of specifying blocks is that no block may
contain another.

2.5.1 BOOLEAN BLOCKS

The block type specification for a Boolean block is

BOOLEAN:

The only statements permitted in a Boolean block are
Boolean statements having the format:

WHEN/CONDITION LIST/THEN SET/UNIT NAME/ $

Whenever the condition list is true, the unit named
is set true and whenever the condition list is false,
the unit named is set false. Boolean statements may
be used to define signals to be used in the system or
to define connections between registers and outputs.

Examples of Boolean Statements

INPUT: START, AIN (10), BIN(10), SA, SA $

REGIST: R(20), B(10), SCTR (4), PCTR(4), CARRY, SUM,
NCARRY, ISIGN $

BOOLEAN:

WHEN (SA*SB)+(-SA*-SB) THEN SET ISIGN $

WHEN (R(1))*- ARRY+(R(1)+CARRY)*-B(1)+(B(1)+CARRY*-R(1)
THEN SET SUM i

2.5.2 SEQUENCED BLOCKS

The block type specification for a sequenced block is

SEQUENCED:

Only one statement in a sequenced block may be potential-
ly active at a given time. If the condition list of a

16

potentially active statement is true, the statement
becomes active and the commands in the operation list
are executed.
If the condition list is false, the statement remains
potentially active. After the operation list of a
statement is executed, the statement becomes inactive
and the next statement in the block becomes potential-
ly active.
Thus, in the absence of any transfer of control, com-
mands, statements become potentially active in sequence.
When the last statement of a sequenced block is reach-
ed, control passes to the next block. This normal
sequence of control will be interrupted when an opera-
tion list containing a transfer of control command is
executed.

2.5.3 CONCURRENT BLOCKS

The block type specification for a concurrent block is

CONCURRENT:

When control is transferred to a concurrent block all
statements in the block become potentially active.
The condition lists of all potentially active state-
ments are then checked to determine which of the state-
ments are to become active. The commands in the opera-
tion lists of the active statements are executed con-
currently. If a transfer of control command was not
executed all statements in the block become potential-
ly active and the process is repeated. Control remains
at a concurrent block until a transfer of control com-
mand is executed.

2.6 CADSS CONTROL CARDS

The control cards necessary for running the CADSS pro-
grams may be divided into two types: those required
for the computer operating system in order to execute
the programs, and those used for control and choice of
options in the CADSS programs themselves.

2.6.1 OPERATING SYSTEM CONTROL CARDS

The CADSS system currently consists of three computer
programs:

17

COMPL - a complier which translates the English
language CADSS description into lists and tables
for later processing.

TABL - A table generator program which produces state

transition tables and unit operation tables

(specifying the conditions each operation on a

unit is performed) from the compiler output.

SIMUL - A simulator program, operating from the compiler
output, to verify that the original description
is correct.

The control cards used for the IBM 360 implementation
are:

360/DOS 360/OS

// JOB CADSS // CADSS JOB
// EXEC COMPL //S EXEC CADSS360

//PASS1.SYSIN DD *

CADSS Program CADSS Program

/*
/*//
// EXEC TABL //PASS2.SYSIN DD *

/* /*
// EXEC SIMUL //PASS3.SYSIN DD *

Simulation data ESimulation data

/* /*

2.6.2 COMPILER CONTROL CARDS

Due to error checking procedures during compilation
it is necessary to separate the declarations (of units)
from the statements of the program. This is accomplished
by the control card $DEND$ which must begin in the first
column of a card.

The end of a CADSS program is indicated by a $ in the
first column of a card. This may be followed by two
options (on the same card). The first option, TABLES,
directs the compiler to list the system description pro-
duced from the input. These tables will be of limited
value to users who are not familiar with the internal
operation of the system.

18

The option STORE N directs the compiler to store the
generated lists and tables on an assigned output file
for use by the other programs. The tape produced is
labeled by the 4 digit number N to prevent confusion of
types of different systems. The STORE option must be
specified if the Table generator or the simulator pro-
grams are to be run.

Storage of compiler results on tape allow many simulations
to be performed without the need of recompiling. This
also allows the tape to be saved for diagnostic use if
problems arise during system construction.

CHAPTER III

3. SERIAL BINARY MULTIPLIER EXAMPLE

A complete design of a Serial Binary Multiplier was selected
as an example of the use of CADSS language. The selection
of various components and the complete logical design is
described in detail.

3.1 A GENERAL DESCRIPTION OF A SERIAL, BINARY MULTIPLIER:
(4 bit)

The design of a binary multiplier is simplified by the fact
that a one-digit binary multiplication is very easily mech-
anized. The truth table for the binary multiplication of
two digits is given below, and is seen to be the same as
the logical operation "and."

Yi 0 1

Xi

0 0 0

1 0 1

Therefore the multiplication of digit Xi by the number Y
may be accomplished simply by storing Xi in a flip-flop
for a word-time, and applying its output to an 'and'
circuit whose other input is the serial number Y.

In general, if X is a n digit number, the multiplication
may be looked upon and is often mechanized as a series of
n simplified multiplications, each determining the product
of the number Y by a single digit Xi. These subproducts
must be shifted with respect to one another and added
together. Very often the multiplication is carried out in
a sequence of steps. Each of the steps determines what is
called a 'partial product.' Each partial product requires
a shift, a single-digit multiplication and an addition. n
of these steps are required to form the product of two n-
digit numbers.

The multiplication is then broken down into a sequence of
operations which may be described by the following rules:

(a) Test the least significant bit of the multiplier regis-
ter. If it is 'one' the multiplicand register is to be
added to the left-hand end of the partial product register.
Otherwise, go to step b.

19

20

(b) Right shift the multiplier register by one digit, put-
ting the former least significant bit into the most signi-
ficant bit position. This brings the next multiplier digit
into a position when it can control the next one-digit
multiplication. Saving the least significant bit in the
multiplier register insures that the multiplier is not
lost. (If it is not necessary to save the multiplier, the
multiplication unit may be simplified by eliminating one
half of the partial product register and shifting the pro-
duct into the multiplier register, replacing the 'used'
multiplier digits.)

(c) Right shift the partial product register by one bit,
putting the least significant bit from the left hand half
of the partial product register into the right hand half.

(d) If the previous three steps have been carried out four
times, stop. Otherwise, return to step a.

As an example consider the multiplication of the two binary
numbers 5 and 7. By hand the multiplication may be carried
out as:

0111 = 7

0101 = 5

0111

0000

0111

0000

0100011 = 35

The same multiplication carried out according to the sequen-
ce of steps described above is shown in Table 3.1.

21

Table 3.1

Multiplication Sequence

Multiplier Partial Product Register

Step Register Left-Hand Half Right-Hand Half

* 0000 0000

a 0101. 0111 0000

b 1.0 1 0

c 0011 1000

a 1.010 0011 1000

b 0 1.0 1

c 0001 1100

a 01.01 1000 1100

b 1 0 1.0

c 0100 0110

a 101.0 0100 0110

b 0 1 0 1.

c 0 0 1 0 0 0 1 1

d STOP

* The dot indicates the position of the least significant
bit of the multiplier.
The method described above has been used in the example
of designing 10-bit serial multiplier, described in the
next page.

22

10-bit Serial Binary Multiplier:

3.2 SYSTEM ANALYSIS:

The multiplier is to be designed to accept two signed
ten bit numbers and a start signal.

It is then to perform the multiplication and trans-
mit a finish signal on completion. The multiplication
is to be performed by repeated serial addition. Two
internal counters are necessary for controlling the

operation. One ten bit register is needed to hold the
multiplicand. One twenty bit register is required to
hold the multiplier and the partial product digits.

A simplified block diagram is given below to describe
the system clearly.

SA I SIGN ISIGN

SB PCTR

AIN R AL AR)R

BIN B Register

3.3 LOGIC AND CIRCUIT DESIGN:

A flow chart describing the various operations for
multiplication is drawn by considering the different
sequences of operations that must be performed.

The following initialization operations are done at
the start of multiplication:

(1) Reset finish signal

(2) Reset AL

(3) Accept the Signal on the input lines

AIN to AR

BIN to B Register

23

(4) Set the Sign bit to the Sign of the result

(5) Initialize the product counter to 10.

Since these operations occur at the same time, they
are grouped in one block. Now initialization of the

add operation is done by clearing the carry bit and

decrementing the product counter. Bit 10 of the AR

result register the least significant bit of the multi-

plier is tested and if it is 1, then the add operation
is done. To perform addition the shift counter is
first set to 10 and the sum and carry are formed.

Register R is shifted entering the sum in the most

significant bit position and the shift counter is

decremented. This process is repeated until the
contents of shift counter are zero.

After each addition, it is necessary to restore the

R register by 10 additional Shifts.

The Register R is shifted by one bit after each ad-
dition (or skipped addition), the product counter
is decremented, and the AR(10) bit is tested in order
to determine if an addition is required. When the

product counter is zero, the finish signal is given
(set), and the multiplier returns to unit for the next

multiplication input. A complete flow chart describ-

ing the above given description is given in fig. 3.1.

Table 3.2 is the CADSS description of the multiplier
written directly from the flow chart in following
steps.

(a) All units of the system are defined such as Inputs,
Outputs or Registers.

(b) The combinational logic used to generate sum,
carry, sign and the output is defined in Boolean ex-

pressions in the Boolean block.

(c) Each operation of the system is then grouped in

sequenced or concurrent blocks.

3.4 OUTPUT TABLE DESCRIPTION OF CADSS PROGRAM LEADING TO
A COMPLETE LOGICAL DESIGN

The CADSS program shown in Table 3.2 was run on an
IBM 360 Computer. The output obtained gives a detailed
description of the logical design of the system.

24

Figure 3.1:

FLOW CHART OF 10 BIT MULTIPLIER

SUM=(R(1)+B(1))*-CARRY+(R(1)+CARRY)*-B(1)+(B(1)+CARRY)*-R(1)
NCARRY=R(1)*B(1) + (1) *CARRY+B(1)*CARRY
ISIGN=(SA*SB) + (-SA*-SB)

RESET: FINISH,R(1-10)
LOAD R(11-20) FROM AIN YES
LOAD B FROM BIN START=1
LOAD SIGN FROM ISIGN
LOAD PCTR - 0101

NO

RESET CARRY
DECREMENT PCTR

SHIF RLEFT

R(11)= YES PCTR=0 ENTER CARRY IN
NO BIT R(20)

NO
YES

SET SCTR TO 101

25

SHIFT R LEFT ENTER

SUM IN BIT R(20)

CIRCULATE B LEFT

TRANSFER NCARRY TO CARRY

DECREMENT SCTR 3

YES

NO

SCTR=0

NO

SCTR=0

YES DECREMENT SCTR

4 CIRCULATE R LEFT

SHIFT R LEFT
ENTER CARRY SET SCTR to 10
IN BIT R(20)

2 PCTR=0
YES NO

Fig. 3.1 (Cont.)

CADSS/SYSTEM 360/40

I C - MUiLT-IPLICATfN BY REPEATED SERIAL ADDITION.
? 0 C
3 0 C CADSS PROGRAM EXAMPLE ILLUSTRATING THE DESIGN OF

4 3 C A SIMPLE DECIMAL MULTIPLIER.
5 0 C
6 0 C DFFINE MULTIPLIER INPUTS

7 0 INPUT: START,SA,SB,AiN(10),B IN(10) $
P 0 C
9 0 C DEFINE MULTIPLIER OUTPUTS

10 0 OUTPUT: FINISH, SIGN $
11 0 C

12 3 C DEFINE REGISTERS
13 0 PEGIST: R(20),8 - 0-,SCTR(4),PCTP(4),
14 0 CARRY,SUM,NCARRY, I IGN $

15 0 $DENO $
16 1. C
17 1 C DEFFINE COMBINATIONAL LOGIC

18 1 RPrLFAN:
19 1 WHEN (P(1)+9(1))*-CAPRPY + (R(1)+CARRPY)*-(I) +
2' 1 (B(1.)+CAPRY)*-R(1) THEN SFT SUM $

21 , WAHE R(1)* (1) + R(1)*CARRY + B(1)*CARRY
>3 2 THEN SET NCARPY s
23 3 WHEN ' (SA*SS) + (-SA*-S8) THEN SFT ISIGN $

24 4 C

25 4 " INITIALIZE AND ACCEPT DATA FOR SIMULATION

26 . C TRANSFER DATA TO COUNTERS 'N A START PULSE
27 4 SEOUF NC'-D: START:

28 4 THFN ACCEPT $

2c 5 WHEN 'START THEN RESET FINISH, RESET R(1-10),
30 r LOAD R(11-70) FROM AIN, LOAD B FROM BIN,

'1 5 LOAD SIGN FROM ISIGN, LOAD PCTR FROM 0101,
3? 5 DISPLAY $
13 6 C SKIP Ar) CYCLE IF MULTIPLIFR BIT IS A ZERO
34 6 CONCRRENT : SKIPCHECK:
75 A THEN RESET CARRY, DECREMENT PCTR $

. 7 WHrN -. (11) THEN GO TO SKIP ELSE
37 7 LOAD SCTP FROM 0101, GO TO ADD $
8 P9 ADD:

9 WHEN SCTP = 00J0 THEN GO TO SHIFT ELSE

40 a LSHIFT R ENTER SUM, LOAD CARRY FROM NCARPY,
41 DECREMENT SCTR, LSHIFT R ENTER B(1) $

42? Sc UFNCED: SKIP:
43 WHEN -PC TP=000 THEN LSHTFT P ENTER CARRY,

44 GO TO SKIPCHECK ELSE Gl TO SHIFT $

45 10 SHIFT:
46 10 THEN LSHIFT R ENTER CARRY $

47 11 WHEN PCTR=0000 THEN SET FINISH,GO TO START,
8 1.1 DISPLAY ELSE LOAD SCTR FROM 0101 $

49 12 C
50 12 C THE REGISTER MUST BE RESTORED TO THE ORIGINAL

51 12 C POSITION AFTER EACH ADDITION CYCLE
52 12 CONCURRENT: RESTORE:
53 12 WHEN SCTR=0000 THEN GO TO SKTPCHECK ELSE

54 12 LSHIFT R ENTER R(1), DECRFMFNT SCTR $

55 13 $ TABLES, STORE 50 $

OT REPRODUCIBLE Table 3.2
.-- --- - CADSS Program for Multiplier

27

Table 3.3 reproduces Page 2 of the CADSS output giving

the number of flip-flops for the various elements.

CADSS/SYSTcM 360/40

NAME TYPE DI MENSION TNDEX

1 STAPT 1 1 1

S SA 1. 1 2

* SR 1 1 3

4 AIN 1 10 4

5 RI N 1 10 14

6 FINISH 2 1 24

7 IPN 2 1 25

" p 3 20 26

R3 3 10 46

10 SCT 3 4 56

11 Dr TP 3 4 60

12 CAPPY 3 1 64

13 SIIM ' 1 65

14 NCAR Y 1 66

1.5 ISIGN 3 1 67

Table 3.3
CADSS Element List

The dimensions specify the number of flip-flops re-

quired for each name or element. For example, to get
a finish signal we need only one flip-flop. This gives
us a complete list of flip-flops to be used in our
logic design of the given system.

Elements used as inputs (Type 1) and outputs (Type 2)
are listed in the table but do not require memory ele-
ments for implementation.

3.4.1 CADSS STATE TABLE

The CADSS Table Generator program constructs a
state table for any described system from information
implicit in the block structure of the system descrip-
tion. Table 3.4 shows the format of the generated

CFtASS STATE AN. UKIT OPEPATIrfN TBLFS

TADF ID 50

PRESJNT STtT NFXT STATe CMnIT ICN

2
I.INC r DIT TON AL

2
('STAPT)

5 (-P(11))

(SCT=0000)

(-PCTP=3000)

6 -(-PCT'=0000)

7
iUNCO ND ITIO AL

7
1 (PCTP=.3300)

Q -(PCTP=0000)

(SrrR=0000)

Table 3.4
Computer Output State Table

28'

29

state table for the multiplier example. Table 3.5
shows the state table drawn in conventional form and

Figure 3.2 shows a state diagram constructed
from

the computer output.

In addition to conditions derived by gating internal
elements, "unconditional" and "persistant" conditions
are also indicated.

"Unconditional" transitions occur whenever the system
is in the first named state regardless of the condi-
tions existing in the system. "Persistant" states
are those having no exits. Once a system enter a per-
sistant state no further state transitions occur.

3.4.2 CADSS UNIT OPERATION TABLE

The unit operation table for the multiplier example
is shown in Table 3.6. This table essentially
converts the initial sequence oriented description
of a system to a block diagram description. The
operations to be performed by each block and the condi-
tions that must exist in order for each action to be
performed are explicitly stated.

The CADSS Unit Operation Table provides a detailed
description of operations to be performed on system
units under different conditions. These steps almost
complete the logical design of the given system.

The frist column in the table is the name of the
element for which the operations are to be determined.
The second column gives all operations performed by
that element and the third column shows the conditions
that are required to exist in the system in order for
the particular operations to be performed. The system
states are indicated by Sl, S2, etc.

As an example the element FINISH (a single flip-
flop) is to be set whenever the system is in state 7
and PCTR is zero. FINISH is reset whenever the sys-
tem is in state 2 and a start pulse occurs.

With the generation of the State and Unit Operation
Tables the first phase of the logical design of a
system is complete. The next step in the design pro-
cess is to choose a logic family, determine which
memory elements are to be used, and implement the
condition equations in combinational logic. Before these
steps are considered in detail, the problem of verifying
a system description by simulation is discussed.

CONDITIONS FOR NEXT STATES (STATE/CONDITION)

Present 'Start -R(11) R(11) SCTR=0O -PCTR=0O PCTR=0O Unconditional

State

1 X X X X X X 2

2 3 X X X X X X

3 X 5 4 X X X X

4 X X X 6 X X X

5 X X X X 3 6 X

6 X X X X X X 7

7 r X X X 8 1 X

8 X X X 3 X X X

Table 3.5

State Transition

C1J

31

State
1

'START

State (11) SCTR=PCTR0000

State
PCTR=0000 5

SCTR=0000

PCTR=0000

State

SCTR=0000

State PCTROOOO State
7 8

Figure 3.2
State Diagram for Multiplier Example

UN !T 7PFPAT ION r ONDITI ON

FINISH
SE T S7* (PCTR=0000)

RESFT S?*('STAPT)

S IGN
LOAA FQOM

ISIGN S2*('START)

cSF T S2*('STAPT)

P
LFFT SHIFT F!MTr '

s(1) 58*-(SCTP='))30)

LFFT SHIFT ENTF0
CAPPY S , (-P~T R0300

+ S6I~. CONDlT TI CNA L

L'FT SHIFT FNTP
U fS4,-(SCTR=0000)

R(! l-20)
LOn FonM

.IB S?*('START)

LcFT SHIFT r ,T
B(1) r4*-(SCTrQ=0000

LOA) FcPlM
BIN 52 ~ (' STAT)

SCTP
DEC r NT S4*-(SCTP =0000)

+Sst-(SCT =0000

LrAD F'fOM
10 0 S3-(-R(1i))

LOA D For
I 00 7*-(PC TP =0000)

pCTP
DFCPE trT S3* UNCONDI TTINAL

Ln)AD FPOM
1010 S?* (' S T A T)

CARRY
qFSFT S3*UNCONDITIONAL

LOAD FFRlM
NCAP, PRY S4*- (SC PF =000

Table 3.6
CADSS Unit Operation Table

32

33

CHAPTER IV.

THE CADSS SIMULATOR

4.1 INTRODUCTION

The object of all simulation is to eliminate errors
on paper rather than in the laboratory. In this
problem area the digital system designer has a distinct
advantage. Properly interconnected building blocks elimi-
nate individual component peculiarities and allow the des-
igner to use these blocks, within practical limitations,
to model only the system's functional performance. The
approach to this model on the circuit level introduces
macroscopic strains on the full system simulation.
Bipolar circuitry and the device level approach using a
finite number of nodes and devices increases the complexity
of simulation. The great number of Boolean equations used
by these methods increases the difficulty even more.
Only the logic level approach allows functional operation
to be modeled in terms of the bit pattern expressed only
as "l's" or "0's". This convenience level allows such

variables as rise times, fall times, and voltage levels
to be ignored except when modifying previously built
systems. The l's and O's can develop a logic simulation

program which applies fan-out limits to flag every over-
load circuit or generate all printed circuit board inter-
connection lists. These attributes fulfill the major
objective of proving that the system works before con-
struction begins.

The anticipated use of the CADSS simulator (for testing
system descriptions during design) led to several simplifi-
cations. Since the present CADSS programs are concerned
with the design of synchronous systems, signal propaga-
tion delays are ignored. The result is a register trans-
fer simulation that may be used to detect and locate
logical errors in the system description. In addition,
the value of each unit is monitored and more than
one change during a simulation cycle causes an error
message. This will detect some timing hazards in the
system.

The simulator may be initialized in any state and with
any desired initial unit values. As an aid to isolating
logical errors, several trace options are available:

1. Statement trace--The number of every active
statement is printed during simulation

2. Unit value trace--The values of the units
specified are printed after each simulation
cycle.

3. Potential hazards trace--Any timing hazards
detected are listed during simulation

34

4.2 SIMULATOR CONTROL CARDS

The following control cards illustrate the sequence of
cards necessary for proper execution of the CADSS Simu-
lation.

// EXEC COMPL

(Program)

// EXEC CADSIM

(Title card of 80 characters)

(Heading format to include the desired output variables

with a length of 120 characters)
(Initialization Card)

$DO N

$START L,L1,L2

$RUN

ITRACE,JTRACE,KTRACE (format 315)

BLANK CARD

/*

35

In the previous example of the Simulator Control Cards,
each has its own special meaning. The first control card
// EXEC COMPL begins in column one of the input card. Spaces
in the card indicate blank columns not punched by the key punch
operator. This is inclusive of all control cards. This control
card complies the program to be simulated. The /* and /& cards
are key punched in columns one and two of their respective cards.
These cards terminate the compilation process.

The control card // EXEC CADSIM initially begins the simulation
of the desired program.

The TITLE CARD is an input card 80 characters in length which
allows the user to place a title at the top of the simulated
program.

The HEADING FORMAT card consists of two input cards totaling
120 characters in length which include the desired output vari-
ables to be printed on a page. Allocation for the number of
variables to be printed must be determined by the individual
format of each variable and its maximum size. The output
names are compared with the name table to determine the data
index and dimension of each name. The number of blanks necessary
to format the output below the Print Title is computed and these
values are then stored in the print list.

The INITIALIZATION CARD defines input variable names cited at
the beginning of the compiled program. The name of the variable
followed by an equal sign followed by the desired input number
in binary defines an input variable. If more
than one variable exists, a comma is placed after the previous
number and the next variable is defined in the same way as the
first. All unit values are set to zero before the data initializa-
tion cards are read. As each card is read, the name is matched
to a name in the name table and the desired values are stored
in the DATAl location specified in the table. If the input
variable list does not exist in the compiled program, then the
initialization card may be omitted.

The $DO N control card sets the .maximum number of simula-
tion cycles. The integer N can be replaced by any other integer
less than or equal to 999. When the integer is omitted, 100
simulation cycles are assumed.

The $START L,L1,L2 control card is next read. This card allows
the system to be initialized in any state (or in several states)
at the same time. The card lists the labels of all states that
are to be initialized in the potentially active condition. The
labels are matched to entries in the label table and the activities
of the corresponding states are set to one (1) meaning potentially
active.

36

The $RUN control card designates to the complier that all
previous control cards are correct. Simulation begins
after the next control card.

The control card ITRACE, JTRACE, KTRACE has a Fortran
format of 315. Only the values of one (1) or zero (0) can
be assumed by any one of the three variables listed. If
zero (0) is assumed by any one of the three variables
listed. If zero (0) is assumed, then the key punch opera-
tor need not punch any character in that integer field
format. Blanks designate zeros. Also in the actual key
punching operation, no commas are punched in this control
card. These three variable names are trace options to
aid the isolation of logical errors since the simulator
may be initialized in any state with any desired initial
unit values. The trace options available are as follows:

1. ITRACE specifies a STATEMENT TRACE. The number
of every active statement is printed during
simulation.

2. JTRACE specifies a UNIT VALUE TRACE. The values
of the units specified are printed after each
simulation cycle.

3. KTRACE specifies a POTENTIAL HAZARDS TRACE. Any
timing hazards detected are listed during simula-
tion.

By initializing a simulation to conditions existing before
an error and tracing, these options make it possible to
determine the exact statements causing the errors.

These previous control cards complete the CADSS initializa-
tion. The BLANK CARD is an input card containing 80
blanks which is used by the RDATA subroutine to terminate
the simulated program. Otherwise, this card is a non-
blank input data card containing no separation between
individual data sets described by the "INPUT:" list of
variables to be read in by the CADSS Simulator.

The /* and /& control cards are key punched in columns
one and two of their respective separate input cards.
These cards terminate the program.

4.3 OPERATION OF SIMULATOR

To apply the tracing error aids and the ease in learning
and use of this simulator, several phases of synchronous

operations govern the actual processing of the simulated

system. The pictorial description on the following page
illustrates the sequenced operations being processed.

Figure 4.1

SEQUENCED OPERATION

OF THE CADSS SIMULATOR

Initialize

Print

Checker
Check Activity

Execute

Read Cycle

Print

37

38

During the initialization phase, the simulator program reads
the tables and lists generated by the compiler. In order to
simulate concurrent operations, two data arrays are used to
store the values of the defined units. The DATA1 array con-
tains the current values of the units and is initially set
to values specified by cards read during this phase. The
trace options, a cycle limit, and the initially active state-
ments are also read from cards.

It is often desirable to observe different units during de-

bugging runs. This is accomplished by reading a print list
during simulation initialization to specify the units to be
listed. In this way, any different units of the system may
be observed without recompiling the system description.

After initialization, the simulator enters the check phase.
At this time, the condition lists of all potentially active
statements are executed interpretively. The statements
having true condition lists are marked in the statement table.

During the operation phase, the operation lists of all
active statements are executed. The current values of the
units are not changed, but the new values are stored in the
DATA2 array. Thus, all operations are performed using the
same values of the defined units.

When the next values of all units are stored in the DATA2

array, the simulator enters the update phase. The values are
transferred from DATA2 to DATA1 and transitions of units are
noted in the DATA2 array. Any input or output operations
specified are performed and the activities in the statement
table are reset to potentially active. The program then
returns to the check phase.

4.4 Simulation Example

The binary multiplier described in Chapter 3 was selected

as an example of the simulator operation. In order to provide

a more legible output the 20 bit R register was divided into

two 10 bit registers, AR and AL. AR was used to contain the

original multiplier and the least significant half
of the result.

AL is initially zero and contains the most significant half
of the

result upon completion.

After compilation the simulator was initialized as explained

in Section 4.2. The data from the initialization cards used is:

39

MULTIPLICATION BY REPEATED SERIAL ADDITION

AL AR B SCTR PCTR SUM SA SB SIGN FINISH

$DO
$START STARTPOINT, LIST
$RUN

1000000000010000010000
/*
//

The simulator was run for several different trace

options to verify the system description. The first example
(Figure 4.2) illustrates a unit value trace in which the
values of all units specified are printed after each simula-
tion cycle. Note that at point A the initial values are
read in to the AR and B registers and the counters are ini-
tialized.

Section B of Figure 4.2 illustrates an add cycle where

registers B and AL are shifted and added with the sum going
into AL. SCTR counts bit shifts during the add cycle.
Section C shows the system shifting the multiplier in AR
looking for a 1. Finally at point D the PCTR has been
decremented to zero and the FINISH flag is set.. The product
(16) is then displayed in the AL and AR registers.

Figure 4.3 shows the results of several multiplications
in which only the initial data and the result are displayed.
This simulation of several binary multiplications verifies
the system specified in the original description. If errors
are noted in a simulation, a statement trace can be used to
determine the particular statement of the system description
that is in error. Correction of the error followed by
additional simulation will quickly lead to a verified sys-
tem description.

The simulation of 11 multiplications shown in Figure
4.3 required 694 clock cycles of the target system. Com-
pilation and table generation required 17.6 seconds of CPV
time on an IBM 360/50 operating in a multiprogramming sys-

40

AL AR B SCTR PCTO SUM S4 S3 IGQN I1SH

0000000000 0000000000 00000000 0000 0000 0 3 0 0

0000000000 0000000000 0000000000 0000 0000 3 0 0 0 0

000019000 .13003000 I)j 100-30 0 3j I o

0000000000 0000000001 000010000 101 0 1 3))

0000000000 0000000001 000001000 1l01 1001 0

000090000 0000000001 0000000100 1000 1001 0 0 0 3

0000000000 0000000001 0000000010 0111 1001. 0 0 0

0000000000 0000000001 0)00000 01 0113 1001 1 3)))

1000000000 0000000001 1000000000 0101 1001 U 0 0 0

0100000000 0000000001 0100000000 0100 U001 0 0 0 0

00103)0000)030,*00J))l 100J0)) 0311 i3'1 0

0001000000 0000000001 0001 00000 0010 1001 a 0 3 3
0000100000 0000000001 0000100000 0001 1001 0 0 30 J)

000001)000)000000001)33001303 03) 1) 001 0 :3 0

0000010000 000C000001 0000010000 0000 100! 0 0 C 3

0000001000 0000000000 0000010000 0000 1001 0 0 3 0

0000001000 3300000000 0000010000 0000 1001 0) .) U

0000000001000 0000000000 0000010000 0000 1000 0 0 0 u)

0000000100 00000000 003001000) 0000 1003) 0 . 3

0000000100 0000000000 0000010003 0000 1000 0 3 .3 3

0000000100 0000000000 0000010000 0000 0111 0 0 0

0000000010 300000300))00010003 0303 ll 3 .

0000000010 0000000000 0000010000 0000 0111 0 3)

0000000010 0000000000 0000010000 0000 0110 0 0 0

0000)0001 300000303) 0000010003 0000 0113 1 0 0 3

000000000! 0000000000 0000010000 00CC 0110 1 0 3

0000000001 0000000000 0000010000 0000 0131

0030000000 1000000000 0000010000 0000 0101 0 j 0

0000000000 1000000000 0000010000 0000 0101 0 0 0 3

0000000000000 i. 00000033 0)3)010003 10 00 313) 3

0000000000 0100000000 0000010000 000C 0100 0 0 0 3 0

0000000000 0100000000 003001000) 000) 010 3

0000000000 0100000000 0000010000 0000 0011 0 0 0) 0

0000000000 0010000000 0000010000 0000 0011 0 0 C))

0000300000 301000000 300)331 0 0 0 0)303 3311 30 0 .3

0000000000 0010000000 0000010000 0000 001 0 0 0) K

0000000000 0001000000 000Ol00000 0000 0010 0 0 0 0

0000000000 0001000000 0000010000 0000 0010 0 0 0 0 3

0000000000 0001000000 0000010000 0000 0001 0 U 0)

00000000 30001 00000 3)000010003 0)00 0001 0 0 0

0000000000 0000100000 0000010000 0000 0001 0 0 0 3

0000000000 0000100000 0000010000 0000 0000 0 3 :

0000000000 0000010000 0000010000 0000 0000 0 0 0 0

0000000000 0000010000 0000010000 0000 0000 0 0 0 03

Figure 4.2
Simulation with Unit Value Trace

41

AL AR SCTR PCTP SIG') FINI H

0000000000 0000000000 0000000000 0000 0000 0
0000033000 300000000003001 000010000 0000 1010 0 0

0000000000 0000010000 0000010000 0000 0000 0 1 /6XI =I,
0000000000 0000010000 0000010000 0000 1310))
0000000000 0100000000 0000010000 0000 0000 0 1 :16 3
0000000000 0100000000 0100000000 0000 1010 0 0 ZS x 256
0001000000 033000000 0100000000 00))33 O'J 3 65, 53(
0000000000 1000000000 1000000000 0000 1010 0 0

0100000000 0000000000 1000000000 0000 0000 0 1

000)330000 1111111111 llll111111 0000 1010 0 (

11111111!0 0000000001 1111111111 0000 0000 0

0000000000 0900000111 0000000101 0000 1010 3 J 7x 5

00j)00000 0000100011 0000000101 0000 0000 0 1 = 35
0000000000 0000001000 0000001111 0000 !010 0 3
0000000000 0001111000 0300001111 0000 000) 3 1
0000000000 0000001010 0000001110 0000 1010 1 0

0000000000 0010001100 0000001110 0000 0000 1 1

000000000 3000011.1 13 000)001111 000') 1013 1 0
0000000000 0111000010 0000001111 0000 0000 1 1

0000000000 0001011.010 000111010! 0000 1010 3 3

0000001010)130100010 0001110101 0000 0000 0 1
0000000000 0000101010 1000011111 0000 1010 0 0
0000010110 010001011.0 1.0.0311111 0000 000) 0 1

TERMINATEO DUF TO LACK OF INPUT DATA

Figure 4.3
Simulation without Trace

42

tem under 360/OS. The simulation required 50.3 seconds
on the same system.

CHAPTER V

DEVELOPMENT OF COMPLETE DESIGN

In order to complete the design of a digital system
using the data generated by the CADSS Table Generator program
the following steps are necessary:

1. State Assignment.
2. Development of input equations to state Memory

Elements.
3. Specification of particular devices for use as

registrars, counters, etc.
4. Reduction of Conditon Lists to minimized Booleon

equations.
5. Implementation of equations using specified

logic elements.

Programs have been written for each of these steps but the
operation of the complete design system is not yet considered
satisfactory. In the following sections the progress made
on each step is discussed.

5.1 STATE ASSIGNMENT

In any sequential system the operations to be performed
depend on both the state of the system and the present inputs
to the system. The state of the system is normally stored in
a set of flip flops which are modified as the system changes
state. The states of the system are assigned unique codes of
flip flop combinations which can then be gated to determine
the operations and next states of the system. The number of
gates required in a system is very sensitive to the assignment
used to relate states to memory element configurations. The
problem of determining the coding of memory elements which will
result in the least total cost of logic gates is normally
referred to as state assignment.

Several alogrithms for generating "good" state assignments
are known. Most require a large amount of computer storage
and time and are limited in the number of states and system
inputs which can be used. After considering several methods
a modified form of Dolotta's alogrithm for large state tables
was programmed in Fortran IV (MS Thesis, M. Boutte, Texas A&I,
1971). The program was tested and finally used as a subroutine
for generation of state assignments for systems described in
the CADSS language. (MS Thesis, P. Santhanam, Texas A&I, 1973)

43

44

When running the state assignment program in a 64K byte
partition on an IBM 360/50 the largest system which could
be accomodated was composed of 10 ineternal states and 2 inputs.
Run times for 10 state systems were on the order of 10 to 15
seconds.

The limited number of states and inputs which could be
used limited the CADSS programs to artifical examples. One
such example is shown in figure 5.1. In order to display
the operation of the system an artificial state was added to
the system description. As shown in the state table this
state (5) in not connected to the other 4 states of the system.

The state assignment program was run for the system
described and the results are shown in figure 5.2. The program
correctly assumed that 3 memory elements would be necessary
in order to encode 5 states. In analyzing the state
transitions for the system the program recognized that the
fifth state was not connected to the other 4 and therefore
produced a state assignment requiring only 2 memory elements.

Although the programs developed will find a good state
assignment for systems having a limited number of states and
inputs they proved inadequate for typical system designs where
the number of states and inputs is an order of magnitude
greater than could be accomodated. In an effort to resolve
this difficulty several other state assignment alogrithms were
acceptable in terms of computer memory and run time requirements.

Reconsideration of the basic problem of state assignment
produced several conclusions. First, early research in this
area was performed at a time when memory elements (constructed
from vacumn tubes) were unquestionably much more expensive than
gates (constructed from diodes). The first step of all early
researchers was to first minimize the number of memory elements
required and then develop a method for coding the states to
minimize the amount of logic required. At the present time
integrated circuit memory elements are comparable in cost to
gates. It seems possible that a strategy using more memory
elements than required might prove less expensive if the amount
of logic could be reduced. A preliminary study in this area
has been initiated but no definite results are available at
this time.

The second conclusion reached was that if a method of
generating the next state functions for the memory elements
could be found which was not sensitive to the particular state
assignment used then the state assignment could be made arbitrarily.
Such a method was proposed and is discussed in the next section.

45

CADSS/SYSTEM 360/40

1 0 INPUT: Xl, X2 $
2 0 OUTPUT: Z

3 0 $ DEND t
4 1 CONCUPRENT:
5 1 S : WHEN -X1*-X2 THEN GO TO S2 $

6 2 S2: WHEN_-Xl*X2 TH=N SET Z, GO TO S3 S

7 3 WHEN X1*-X2 TFN GO TO St $

8 4 S3: WH N -Xl*-X? THEN GO Tq S4 $
9 5 S4: WHPN -XI*X2 THEN GO TO S3 $

10- -------- 6 WHEN X1*-X2 THEN GO TO S1, RESET 7 $

11 7 CONCURRENT: LIST: THEN DISPLAY $

12 8 THEN ACCEPT $. -..

13 9 $ TABLES, STCPE 201 S

-- -- ------ - - --

CADSS. ST ATE-A ND UN I-T. OPERA.T ION__TABL.ES .---- .

..... T AP . _ D _ . 20 1---------.....

PPESENT STATE NEXT STATE CONDITION

1
2 --..--.- --X--X2

3 (-Xl*X2)
I (X1*-X2)

3
4 (-X1*-X2)

4

3 (-X1*X2)
1 (X1*-X2

5
PERS ISTANT

Figure 5.1

State Assignment Example Description

46

THE ARRANGED TABLE FOR BOUTTE'S PROGRAM IS
'°i -.. .. -i - i----.. ..----....---......-----....----....----....----..

1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 1 -1 3 -1 -1 -1 -1 -1

3 4 -1 -1 -1 -1 -1 - -1 -1 -1

4 -1 -1 1 -1 3 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -I -1 -1- - 1 -1 -1 -1---------------------- -------- - ----------------

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 - -1 -1 -1 -1 -1 - -1 -1

THE NO. OF ROWS IS 4

------------------------- -- --
STATE MEMORY ELEMENTS

1 2-1 -1-1 -I- -1-1

.. .. -- - .- ------------------------....-------------------------------

2 -1-1 1 _ 1 - 1- ---------------- --------------------------- ------
3 4-1 -11 - -1 -1-1 - -.

4 -1-1 1-1 3-1 -1-1

S TATE. 'E3RY EL MENTS

1 .. 2 3

1 o 0

2 01.. _I

S0 0 1

4 0 . _1..0.....

Figure 5.2

Computer Generated State Assignment

47

Since the state assignment programs developed were not
satisfactory and since two attractive lines of research are
being followed, the state assignment programs were not
incorporated into the CADSS system.

5.2 DEVELOPMENT OF MEMORY ELEMENT INPUT EQUATIONS

Due to the lack of a satisfactory solution to the state
assignment problem no programs were written to obtain the
input equations for the state memory elements. It is believed
at this time that the use of arbitrary state assignments
with programmable logic arrays or read only memories will
provide a very attractive design automation system. Programmable
logic arrays (PLA) or programmable read only memories (PROMs)
are os recent commercial introduction and offer a convenient
and relatively inexpensive method of implementing complex .logic
functions. The information stored in these meories is
introduced into the memory such that the information is semi-
permanent or permanent. These memories are classified
according to tye type of construction. There are three
major classifications, as follows.

1. Transformer core type. In this type, given word
line either threads through or bypasses a core.
One of these conditions is designated as a binary
1 whereas the other condition is a 0.

2. Card-capacitor type. A set of words are etched on
one printed circuit board. Due to formation of
capicators at the junctions, a selected word line
is capacitively coupled with the sense line (out-
put line).

3. Integrated circuit type. In this type the coupling
between the word line and the putput line is by means
of diodes or transistors. Sometimes only the diodes
(or transistors) at the 1 junction are manufactured.
Sometimes Read-only Memories are manufactured with
diodes at all the junctions. The o - output or no-
diode positions in such case are obtained by break-
ing or burning the input conneciton.

Out of all these types it can be seen that the inte-
grated circuit type is the most convenient, as it can be
programmed as desired by the user. PROMs are available from
several different manufacturers as off the shelf items.
A typical device having 5 address lines and 8 outputs is
represented in figure 5.3. This memory is organized in 32

48

LOGIC DIAGRAM INPUT/OUTPUT SCHEMATIC DIAGRAMS

WIUT IACHEMATC

32 ARIAY UWUT a CHM ATICS

OND - ()
(N) * D U kV.M -

Figure 5.3

Programmable Read Only Memory

words of 8 bits/word. PROMs are supplied by the manufacturer
with all bits set to either 1 or 0. Programming (or initial
storage of information) is accomplished by setting the address
of the word to be programmed on the address lines and then
supplying excess current or voltage to the data lines to burn
out the diodies, transistors, or fuse links for selected bits.
Commercial programmers are available for this operation.

At the present time PROMs are priced between $20.00 and
$30.00 each in lots of 10 to 100. Using current costs PROMs
are somewhat more expensive than NAND/NOR combinational logic.
There are however, several related advantages in using PROMs
for implementation of next state functions.

1. Gate density is much higher in PROMs.
A 16 pin DIP may conatin 32 eight bit words of memory.
To provide the same potential amount of logic using
unminimized NAND/NOR gates would require 32 five
input gates and up to 256 inverters. This amounts
to 30 to 60 IC packages.

Obviously minimization of the switching function will
reduce the number of NAND/NOR gates drastically, but even

49

if a 10 to 1 reduction is obtained the PROM implementation
will require 1/3 to 1/6 the number of IC packages.

2. Construction time of prototype or limited production
systems is much less for PROMs. When systems are
to be constructed by manual methods a PROM implementation
will require only 20 to 30% of the number of
connections required for NAND/NOR technology. The
programming or storage of information in the PROM may
be accomplished very rapidly using a computer controlled
programmer.

3. The system design time will be reduced by using PROMs
since minimization of functions is not necessary.

4. System reliability will be increased due to the
smaller number of interconnections.

5. System troubleshooting and repair will be easier
since the logic equations implemented will not
be in minimized form.

6. The required parts inventory would be decreased
since the normal variety of NAND and NOR gates
would not be required.

In view of these factors as well as an anticipated drop
in PROM prices as the technology and demand develop, this
method of design appears to deserve future study.

5.3 SPECIFICATION OF PARTICULAR DEVICES

The CADSS language allows the designer to designate
general purpose registers and then specify the operations
these registers are to perform. The Unit operation table
(described in Chapter 3) lists all operations (such as shift
right, reset, load, increment, etc.) each register is to
perform. From this table a designer can specify a particular
register design which will perform the desired functions.

By including a library of standard registers together
with a description of the functions each will perform it is
possible to program the computer to compare the functions
each register in a system is required to perform with the
functions specified in the library. The program can then
choose the least expensive standard register which will perform
the required functions.

50

A program to abstract the functions required for each

register was written and tested (MS Thesis, A. Sharma, Texas

A&I, 1970). During testing using several CADSS program des-

criptions it was found that in many cases registers must be

separated into several subregisters which have different

requirements. For example a portion of a register may require

parallel loading while the remainder of the same register

will not. The program was modified to specify the require-

ments of each bit of a register in order to accomodate this

situation.

The final result of this portion of the research project

was a program which accepts the CADSS input description of

a system and produces tables specifying the operations each

bit of each register is to perform. A program to match these

tables with library descriptions of standard registers is

being developed but is not yet complete.

5.4 Reduction of Condition Lists to Minimized Boolean
Equations

The condition lists of a CADSS description specify the

conditions required in order for particular operations to

be performed. As written by the designer they are already
in Boolean form but they must be minimized and converted to

a form that can be used more easily by the computer. Prog-
rams for performing logic reduction of generalized switching
functions were written (MS Thesis, B.J. Patel, Texas A&I

University, 1970). The method programmed was a modified

form of McCluskey's tabular method.

This program was later modified to read the tables

produced by the CADSS compiler and produce output tables

to be used by a NAND/NOR implementation program (MS Thesis,
G.I. Mehta, Texas A&I University, 1973). This program pro-
duces lists describing each condition list in standard sum

of products form. The format of the internal minterm list

is shown in figure 5.4. An example of the output lists is

shown in figure 5.5.

At the present time each condition list is minimized

independantly. Consideration was given to development of

a method of minimizing all condition lists as a multiple

output function. Examination of a large number of CADSS

descriptions indicates that there are very few cases where

minimization as a multiple output function would reduce the

logic requirements significantly. Since both memory and

computer run time requirements would be greatly increased
no further efforts were made in this direction.

51

MTPTR OUTPUT SIGNAL
2007

NAME

NO. OF NAMES 2

NO. OF MINTERMS 2

SNAME 1 12

NAME 2 13

MINTERM 1 0

MINTERM 2 3

STATEMENT NO, 14

Figure 5.4

Minterm List (Program Format)

52

TAPE ID 201

SRIBL VALUES ARE AS FOLLOWS.

3 4 2 4

TSIG VALUES ARE AS FOLLOWS.

5 3 4 6 5 2 6 7 6 7

4 8 7 8

TSIG VALUES ARE AS FOLLOWS.

2 2 3 4 2 1 4 5 3 5

3 6 4 6

MINTERMS NUMBER OF ONES IN EACH TERM
4 1
5 2
6 2
7 3

THIS IS A MINTERM CHART.

2001 3 4 2 3 4 4 5 6 7

2

Figure 5.5

Minterm List (Printed Format)

53

During the examination of the system descriptions it
was noted that some system conditions (such as a counter
being equal to zero) occur in many condition lists. In order
to eleminate duplication of logic these conditions were iden-
tified as special signal names and generated only once. For
example in processing a condition list:

(SCTR = 100*SA)

SCTR = 100 is identified as a special signal. The table
of special signals is searched and if this signal has been
entered and assigned a signal name, that name is used in
the minimization program. If the signal has not been entered
in the table, it is entered and assigned a name for use in
later processing. The signal names are assigned in sequence
beginning at 1001 as shown in Figure 5.5.

5.5 Implementation of Equations in NAND/NOR Logic

The final step in producing a system design is the
implementation of the Boolean equations describing the system
in terms of a standard logic family. Several methods were
considered and a procedure proposed by D.T. Ellis (IEEE Trans-
actions on Electronic Computers, Vol. EC-14, October, 1965,
pp. 701-705) was selected. A computer program using this
method was written and tested (M.S. Thesis, C. S. Hou, Texas
A&I University, 1969). This program was later expanded and
interfaced to the tables produced by the CADSS system.

A set of NAND logic circuits is included in Figures 5.6
and 5.7 to illustrate the format of the generated tables.
Since the NAND logic is generated only for the condition
lists of the description an example consisting of several
Boolean equations was prepared. This example description
is shown in Figure 5.6. This system description was run on
the CADSS compiler, the minterm program and the NAND logic
program.

Figure 5.7a shows the output produced by the minterm and
NAND programs. The statement is first identified and the sig-
nals used as inputs are identified. The decimal values of the
minterms in a standard sum-of-products form are given. In
example 5.7a the standard form of the minterm would be:

f(A,B,C) = m4 + m5 + m6 + m7

Below the minterm description is a list specifying the
NAND logic required to implement the expression. Since the
system will eventually include NORs and other logic elements,

54

CADSS/SYSTFM 360/40

0 C THIS IS A CADSS EXAMPLE PROGRAM TO TEST FEASIBILITY OF MINI
0 C

0 INPUT: A, B, C, n, E $
0 ULOTPUTI T $
0 $ DEND $
1 C
1 SEQUENCED: STARTPOINT:
1 WHEN A+ A*B*C THEN SET T $
2 WHEN -A + A*R*D*B THEN SET T $
3 WHFN -A*-R*-C*-D THEN S;cT T $
4 WHeN -A*~B-C*D THFN SET T $
5 WHFN -A*-r*C*-D THEN SET T $
6 WHEN -A*-PRC*D THEN SET T $
7 WHFN -A*-D*- C*B THEN SET T $
8 WHEN B*-A*DO-C THEN SET T $
9 WHEN B*-r)C*-A THEN SET T $

0 WHN -A*B*CND T H N T
11 WHEN -D*-B*A*-C THEN SET T $
12 WHPN A*B*-C + A*-B*D + B*D*-E + E*C*-D THEN SET T $
13 $ TABLES, STORE 201 $

Figure 5.6

Description for NAND Example

55

(1) STATEMENT NUMBER: 1

INPUT(S) :

A

C

M INTFRM(S): 1 3 5 7

NAND GATE STRUCTURE

1 1 2001
A

1 1 2002
2001

A 2002

Figure 5.7a

Minterms, NAND Structure and Logic Diagram
for Statement 1

56

(2) STATEMENT NUMBER: 2

INPUT(S):

A

B

D

MINTERM(S): 0 2 4 6 7

NAND GATE STRUCTURE

1 1 2001
A

1 1 2002
2001

1 2 2003
D

1 2 2004
2002

, 2003

A 0 2002

2004

2003
B

Figure 5.7b

Minterms, NAND Structure, and Logic Diagram
for Statement 2

57

INPUT(S):

A

C

D

MINTERM(S): 0

NAND GATE STRUCTURF

1 i 2001

1 1 2002
C

1 I. 2003
B

1 1 2004
A

1 4 2005
2001
2002_ _ __.__

2003
2004

1 1 2006

2001

D

C 2

2005 2006

B 3

2004

Figure 5.7c

Minterms, NAND Structure and Logic Diagram
for Statement 3

58

INPUT(S:

A

C

0

MINTERM(S): 8

N4ND GATE STRUCTURE

1 1 2001

1 1 2002.......... - ----]-~ -o o

1 1 2003
A

1 4 2004.
2001
2002
2003
0

1 1 ,2005
2004

C O

QB00 200 5

A 03

D

Figure 5.7d

Minterms, NAND Structure and Logic Diagram
for Statement 4

59

(12) STATEMENT NUMBER: 12

INPUT(S):

A

B

C

D

E

MINTFEM(S): 3 9 10 20 11 13 14 19 21 22

MINTFRM(S): 25 15 23 27 29

NVND GATF STPUCTUPE

1 1 2001
C

.1 ? 2002
2001
B
A

1 1 2003
E

1 3 2004
2003_ ___________ __ ____

1 1 2005
0

1 3 2006
2005
C

1 3 2007
2003
D
A

Figure 5.7e

Minterms, NAND Structure and Logic Diagram
for Statement 12

60

3 2008
2001 ..
D
A

1 1 2009

1 4 2010
2009

2001 6 2011
c 2002

2004
B 2002 2006

2007
2008

E 2003 2010

D 2004

2005
D

2006

C 2011

2003

A2007

2001

A 2008

E 2010

Figure 5.7e (continued)

Minterms, NAND structure and Logic Diagram
for Statement 12

61

the first entry on each now identifies the type of gate with

1 representing a NAND. The second entry is the number of
inputs to this gate and the final entry in the line is a

signal name (beginning with 2001(assigned to the output of

the gate. Below this line the signal names of the gate
inputs are listed. Following this, with the same format,
are descriptions of any other gates required to implement
the desired function. The logic diagram specified has also
been drawn on each figure.

The program runs in a 64K partition on an IBM 360/50.
Execution time for the example of figure 5.6 was 8.9 seconds
for the compilation and 10.6 seconds for generation of min-
terms and the NAND gate structure. Execution time for com-
pilation and logic generation is directly proportional to
the number of condition list statements in the CADSS description.

One oversight in the NAND generation program is illus-
trated in figure 5.7a. The method does not recognize that
two inverters in series can be combined and eliminated. A
correction has been found but has not yet been incorporated
in the program.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In retrospect, the project to produce a complete

computer-aided design system was much too ambitious for the

resources available. Industrial programming support groups

have spent tens of man-years producing portions of design

automation systems. Six Master's Theses as well as several

student projects and small amounts of faculty time have

produced several parts of a system which should prove of

assistance to a digital designer. Several important areas

must be completed before a completely automated system will

be available. Several interesting research areas have been

identified and are currently under study.

6.1 Current Applications

At its present stage of development the CADSS system

will provide assistance to a digital designer. A system

can be easily described provided it does not use some of

the recently developed integrated circuits now available

such as decoders, arithmetic elements or special types of

counters. A system description can be simulated at a

functional level to determine if any errors exist in the

logic of the design.

After a correct description has been obtained and

verified the state and unit operation tables provide the

first step toward logic implementation. The designer must

perform the state assignment. The generation of NAND/NOR

logic for control of the defined registers of the system

may be performed by the CADSS system although it will not

provide an absolute minimum circuit. The selection of

standard registers, counters, etc. must be done by the

designer with the aid of a CADSS table specifying the

functions each bit of an element is to perform.

6.2 Use of New Functions

The types of digital semiconductors available as stock

items have increased rapidly in recent years. Single IC

elements are now available to perform arithmetic functions,

62

63

decode values for display, count in various codes, and
many other functions needed in digital systems. These new
integrated circuits can significantly reduce both the cost
and the design time for many systems. Any design automation
system should provide a means of including new functions in
the list of available devices.

The CADSS compiler, table generator and simulator
programs are written as syntax directed programs. The
register operations (shift, load, count, etc.) are defined
by the Fortran program itself. In order to add new opera-
tions it is necessary to rewrite significant portions of
both the compiler and the simulator. The amount of repro-
gramming required makes it impractical for a designer to
add new elements to the CADSS description.

In order to modify the CADSS programs to allow a user
to easily add new elements it will be necessary to change
the method of compilation and simulation and rewrite the
compiler as a table directed system.

In essence, a table directed system contains the oper-
ations to be performed in a table which can be easily mod-
ified or augmented by the user. For the CADSS programs this
will require a table with an entry for each type of element
defined. The table entry will contain the number and name
of all inputs and outputs of the element and the input/output
relationship for the device. For example, a 4 bit serial in/
parallel out shift register might be defined as:

Input: Shift, Data
Output: AO, Al, A2, A3

A3 = Shift * A2 + Shift * A3

A2 = Shift * Al + Shift * A2

Al = Shift * AO + TiftE * Al

AO = Shift * Data + Shift * AO

Once this information defining the operation of the
shift register has been entered by the user any number of
shift registers can be used in the system description.

Both the compiler and the simulator programs must be
rewritten in order to use the tables defining the operation
of elements. Different methods for implementing a table
driven version of the CADSS programs are under consideration
at this time.

64

6.2 Extension of Logic Generation

Three extensions of the NAND generation program are
under consideration. The first is to idenfity particular
logic devices by number rather than specify a gate with a
given number of inputs. For example, rather than printing

1 1 2001 indicating a NAND inverter the program
could print 7404 2001 identifying the part number
for a hex inverter. In addition the particular IC device
could be given a code and the inputs and outputs of the
gate could be identified by pin numberi Thus:

A7: 7404 2001 (14)

C (1)

would specify IC A7 (a 7404 hex inverter) with pin 1
connected to signal C and pin 14 to signal 2001.

This output format could be obtained easily by adding
a table of logic gates to the NAND program and searching
for the gates with the correct number of inputs. Assigning
signal names to particular IC devices without regard to the
location of the devices may lead to excessive connection
lengths in some cases. However since the gate structure
generated by one statement would be assigned together there
should be a grouping of gates involved in each equation.

The second extension of the logic generation program
involves eliminating the series inverters which are generated.
The method which has been selected is to generate gates as
before but whenever an inverter is generated check the source
of the input. If the input is found to come from another
inverter then both inverters will be removed from the gate
list.

Addition of NOR, AND and OR gates to the system is the
third desirable extension of the logic generation program.
Several methods have been considered which will allow
implementation using specified logic elements but no pro-
gramming has been done as yet.

6.3 State Assignment

As discussed earlier no reasonable solution to the state
assignment program has been found. The most attractive
alternative appears to assign states to arbitrary codes and
generate the next-state input functions using PROM elements.

65

As a first step in testing the validity of this concept,
the memory available to the state assignment program will
be expanded to the maximum permitted on the computer system
in use (512 Kbytes). A number of typical systems will be
described in the CADSS language and complete state assign-
ment and logical design will be performed for each. The
same systems will be designed using a PROM structure and
the costs of the systems will be compared.

If it is found that the hardware costs are comparable
then the other advantages of PROM systems will be very
attractive. In this case a program to specify PROM contents
will be added to the CADSS system. The output of this
program will be a deck of cards that can be read on a mini-
computer with digital output capability. This minicomputer
can then be used to automatically store the desired infor-
mation in the PROM.

6.4 Final Conclusions

Even at the present stage of development the CADSS
system offers considerable advantages to the digital designer.
It has been used (in several stages of development) for
several years in logic design classes and projects at Texas
A&I. The designs produced usually require more logic than
would be needed by an experienced designer. On the other
hand the simulation locates errors in logic which are
occasionally made by even the most experienced designer.
Inexperienced students can easily design a system, eliminate

logical errors and obtain a correct (though not completely
minimized) system in less time than an experienced designer
who uses no computer aids.

Particularly where limited production of a system is
anticipated and design costs are higher than component costs,
use of the CADSS system can reduce total development cost as
well as time.

APPENDIX A

ABSTRACTS OF TEXAS A & I UNIVERSITY

M.S. THESES RELATING TO CADSS

ATODARIA, J. I.

Data Structure for CADSS Display

(May, 1971)

Thesis Advisor

Ernest A. Franke

Abstract

The CADSS (Computer Aided Digital Systems Synthesis)

programs are intended to form a complete computer aided

design system. The complete system consists of many

computer programs such as a compiler, table generator,
simulator, state assignment, logic reduction, and imple-
mentation programs. Some of the basic concepts of "Man-

Computer Graphics" for the computer aided digital system
design are discussed in this paper.

This paper deals with the problem of how the particular

graphic information of digital system synthesis will be

represented and processed inside the computer. Two com-

puter programs written in FORTRAN IV and run on an IBM

360/44 computer are presented here.

67

BOUTTE, Milton D.

Computer Aided State Assignment by Dolotta's Algorithm

(August, 1971)

Thesis Advisor

Ernest A. Franke

Abstract

The purpose of this thesis was to develop a computer
program that would select a minimum cost state assignment
for sequential circuits.

A computer program was written using Dolotta's algorithm.
A set of desirable codes were generated and then mapped into
the state table to form a scoring array. The scoring array
was then scored for such features as all zero, adjacency,
all one and other entries which will reduce the cost of the
circuit. The codes that are codable and with the highest
score are selected as the state assignment. Output logic
simplification and don't cares are also taken into consid-
eration.

68

HOU, Chen-Seng

Computer Reduction of Logic Equations and NAND or NOR
Implementation

(May, 1969)

Thesis Advisor

Ernest A. Franke

Abstract

The purpose of this paper is to test the feasibility of
using a computer program to reduce and implement logic
systems from given Boolean Equations.

The prime implicants of the logic equations are found by
the McCluskey Method. By grouping the prime implicants into
the basic patterns of all NAND or all NOR structure, a re-
duction in size of the equation will be realized.

By handling such a problem with a computer program, the
simplified resultant stracture can be obtained in a short
time.

69

MEHTA, Girishchandra I.

Minterm Generation Using CADSS DATA
(December, 1973)

Thesis Advisor

Ernest A. Franke

Abstract

The research reported in this thesis consists of an

extension to the set of CADSS programs previously developed
for computer aided design. The CADSS (Computer Aided

Digital Systems Synthesis) language developed for the

design of digital systems is the basic source of this

thesis project. For complete design of a combinational

logic system and for its NAND implementation, a NAND

program written previously by Mr. Hou is used.

The inputs to the NAND program are the number of input
variables, the number of minterms, the names of the input
variables and the actual minterms. This data to the NAND

program is supplied through punched cards.

In this thesis a program called minterm is developed
which reads and interprets some of the tables generated

by the CADSS system. The program determines the input
variables used in the CADSS system and generated the

logical minterms associated with these input variables.
An attempt is also made to prepare a data set for the

NAND program which can be interfaced later with the CADSS

system and the minterm program of this thesis.

The thesis includes the discussion of the program and

flow charts. The flow charts are drawn to an extent to

make the program self explanatory and easily understand-
able. As an illustrative example, Booth's algorithm for

binary multiplication is selected which tests the feasi-

bility of the minterm program.

70

PATEL, Bipin J.

Computer Aided Logic Minimization
(August, 1970)

Thesis Advisor

Ernest A. Franke

Abstract

The purpose of this paper is to present a computer
oriented method of obtaining minimal logic functions
from original switching functions so as to minimize the
cost of the combinational logic. A computer oriented
algorithm is presented using McCluskey's technique to
generate the minimal switching functions. The flow
chart for the program and complete details of program
operation including results are presented.

The state assignment problem in the design of syn-
chronous circuits is also described briefly.

71

SANTHANAM, Parthasarathy

State Assignment for the CADSS System
(December, 1973)

Thesis Advisor

Ernest A. Franke

Abstract

The CADSS language simplifies the design of digital
machines from the flowchart level to the state assign-
ment level. In this paper an attempt is made to save the

design engineers' time further by minimizing the state

assignment produced by the CADSS system.

Both the CADSS language and a number of state assign-
ment Algorithms were studied in detail for the preparation

of this thesis. Dolotta's Algorithm for state assignment

was chosen due to the availability of programs written by
Mr. M. D. Boutte (M.S. Thesis, Texas A&I, 1971).

This thesis describes the linkage between the table

generator of the CADSS system and the state assignment

programs. Program flow charts and descriptions of the

CADSS data tables, several state assignemtn algorithms

and Boutte's programs are also included.

72

SHARMA, Anil K.

Computer Aided Logic Selection
(May, 1970)

Thesis Advisor

Ernest A. Franke

Abstract

The purpose of this thesis is to illustrate the use of
the Computer Aided Digital System Synthesis (CADSS) language
in the design of a digital system. This is achieved by first
describing the CADSS language and secondly by designing a
10 bit multiplier. The design of a 10 bit multiplier in-
cludes a complete logic design description and details of
cost and characteristics of each logic unit.

Since the CADSS language has not yet been developed to
its full extent, a computer program has been included in
this paper to generate a table to be used as a next step
in the development of CADSS language.

73

REFERENCES

1. Gorman, D. F. and Anderson, J. P., "A Logic Design
Translator," Proceedings of Fall Joint Computer
Conf., pp. 251-261; Fall 1962.

2. Kelly, Jr., J. L.- Lochbaum and Vyssotsky, V. A.,
"A Block Diagram Compiler," The Bell System
Technical Journal, pp. 669-676; May 1961.

3. Schlaeppi, H. P., "A Formal Language for Describing
Machine Logic, Timing, and Sequencing (LOTIS),"
Trans. IEEE, Vol. EC-13, pp. 439-448; August 1964.

4. Schorr, H., "Computer-Aided Digital System Design and
Analysis Using a Register Transfer Language,"
Trans. IEEE, Vol. EC-13, pp. 730-737; December
1964.

5. -- ADD, Philco-Ford Application Manual, Section 7,
Philco-Ford.

74

